Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(7): e0271285, 2022.
Article in English | MEDLINE | ID: covidwho-2021870

ABSTRACT

OBJECTIVE: When facing major emergency public accidents, men and women may react differently. Our research aimed to assess the influence of gender difference on social support, information preference, biological rhythm, psychological distress, and the possible interaction among these factors during the COVID-19 pandemic. METHODS: In this cross-sectional study, 3,237 respondents aged 12 years and older finished the online survey. Levels of social support, information preference, biological rhythm, and psychological distress were assessed using validated scales. A path analysis was conducted to explore possible associations among these variables. RESULTS: The path analysis indicated that women with high levels of social support had a lower possibility of biological rhythm disorders and lower levels of somatization symptoms of psychological distress during the COVID-19 pandemic. The influence of social support on somatization symptoms was exerted via biological rhythm. Women tended to believe both negative and positive information, while men preferred more extreme information. CONCLUSION: Our results highlighted gender difference in study variables during the COVID-19 pandemic and the importance of social support in alleviating psychological distress and biological rhythm disorders. Moreover, we confirmed that information preference differed significantly by somatization symptoms of psychological distress, suggesting extra efforts to provide more individualized epidemic information. Longitudinal research is required to further explore casual inferences.


Subject(s)
COVID-19 , Psychological Distress , COVID-19/epidemiology , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Pandemics , Periodicity , SARS-CoV-2
2.
Mol Biomed ; 1(1): 16, 2020.
Article in English | MEDLINE | ID: covidwho-1515459

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.

3.
J Inflamm Res ; 14: 3637-3649, 2021.
Article in English | MEDLINE | ID: covidwho-1360680

ABSTRACT

PURPOSE: Pulmonary vascular endothelial cell (EC) injury is recognized as one of the pathological factors of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Bone marrow mesenchymal stem cell (BMSC)-based cytotherapy has attracted substantial attention over recent years as a promising therapeutic approach for ALI/ARDS; however, its use remains limited due to inconsistent efficacy. Currently, gene modification techniques are widely applied to MSCs. In the present study, we aimed to investigate the effect of BMSCs overexpressing Homeobox B4 (HOXB4) on lipopolysaccharide (LPS)-induced EC injury. METHODS: We used LPS to induce EC injury and established EC-BMSC coculture system using transwell chambers. The effect of BMSCs on ECs was explored by detecting EC proliferation, apoptosis, migration, tube formation, and permeability, and determining whether the Wnt/ß-catenin pathway is involved in the regulatory mechanism using XAV-939, inhibitor of Wnt/ ß-catenin. RESULTS: As compared to BMSCWT, BMSCHOXB4 coculture promoted EC proliferation, migration, and tube formation after LPS stimulation and attenuated LPS-induced EC apoptosis and vascular permeability. Mechanistically, BMSCHOXB4 coculture prevented LPS-induced EC injury by activating the Wnt/ß-catenin pathway, which is partially reversible by XAV-939. When cocultured with BMSCHOXB4, pro-inflammatory factors were dramatically decreased and anti-inflammatory factors were greatly increased in the EC medium compared to those in the LPS group (P<0.05). Additionally, when compared to BMSCWT coculture, the BMSCHOXB4 coculture showed an enhanced modulation of IL-6, TNF-α, and IL-10, but there was no statistically significant effect on IL-1ß and IL-4. CONCLUSION: Coculturing of BMSCHOXB4 prevented LPS-induced EC injury by reversing the inactivation of the Wnt/ß-catenin signaling pathway. An in vivo study remains warranted to ascertain whether engraftment of BMSCHOXB4 can be an attractive strategy for the treatment of ALI/ARDS.

SELECTION OF CITATIONS
SEARCH DETAIL